
Reviewing the Efficacy Predicting Cancellation
Days in Regional School Unit 1

Using a Multilayer Perceptron Deep Learning
Model

Lochlan Aldrich and Declan Wright
Advanced Placement Statistics

May 29, 2025

1 Introduction on Model Training

We introduce a sophisticated multilayer perceptron (MLP) neural network to predict
snow days using data from historical weather datasets. Our model underwent extensive
training across two computational environments: 96 hours on a local GPU, followed by
an additional 6 hours on Google Cloud’s v2-8 tensor processing unit. We acknowledge
Google Cloud for providing access to their computational infrastructure.

This extensive training process required over 159 quadrillion floating-point operations
(FLOPs) during computation. While these numbers represent a seemingly implausible
scale, modern compute hardware makes such processing achievable within reasonable time
frames. The combination of local GPU training runs and cloud-based TPU acceleration
for testing and refinement enabled us to complete this computationally intensive training
in approximately 100 total hours.

2 Neural Network Architecture

To understand how an MLP can predict snow days, an understanding of their internal
structure is required. These models loosely resemble the human brain, with neurons
internally representing different functions. In our model, we use a single hidden layer
with 50 neurons. Larger models may use more layers or more neurons, but the concept
is the same.

In an MLP, each neuron is defined as the sum of each preceding weight plus a bias.
Both weights and biases are learned through training using a backpropagation algorithm,
essentially a function that calculates derivatives using the chain rule with respect to every
parameter in the model. An optimizer function (in our model we use Adam) attempts
to minimize a loss function in a model. Each time the model is exposed to a full pass of
the training dataset, backpropagation calculates the gradients and Adam minimizes loss,
essentially teaching the model to recognize patterns in the data.

1

Snow Day Prediction using MLPs 2

3 Model Size Optimization

Determining the optimal number of neurons is difficult. Too few hidden neurons may
result in a model that is not able to capture complex patterns from the dataset. On
the flipside, extremely large models often overfit to their training data, resulting in a
model that performs well on information it has already seen, but cannot make accurate
predictions in the real world.

To solve this issue, we create a simple random sample of 20% of the examples from the
original dataset. This data is reserved as an unseen validation set, safeguarding against
overfitting. To determine the optimal number of parameters to use internally, we run a
series of tests with n = 50 training runs in each sample to estimate the best potential
performance.

Figure 1: Mean Model Performance (validation) over Number of Hidden Neurons

From this figure, we can observe that using too many or too few hidden neurons results
in unstable training, as seen in examples of over 70 hidden neurons, or neuron counts
below 10. Within the stable range, 50 appears to offer the best combination of stable
precision, and the highest recall. For this reason, 50 is chosen as the optimal model size
for our network.

4 Training Process and Stability

In our model, we train for a total of 3,500 passes over the dataset (Epochs). The result
from this training run is shown below.

Snow Day Prediction using MLPs 3

Figure 2: Loss Functions During Training

From this graph, we observe an incredibly stable training run. The smoothness of
both curves shows strong learning ability. Additionally, the unseen validation set remains
remarkably similar to the training data itself. This provides convincing evidence that the
model is not overfitting to its training set.

5 Activation Function Evolution

During testing, we experiment with different inputs and model shapes. We experi-
ment with several different activation functions, transformations that take the calculated
weights and biases from each neuron and introduce nonlinearity.

5.1 Initial Implementation with ReLU

Initially, we used ReLU as our activation function. ReLU, which stands for Rectified
Linear Unit, is simple and easy to compute, defined as a piecewise function where negative
numbers equal zero, and positive numbers remain unchanged. Our first model is built
using ReLU, and it achieves a respectable 73% precision on the validation set using just
three input features: predicted snowfall, previous day’s snowfall, and temperature.

5.2 Experimentation with GELU

Unfortunately, ReLU presents some issues and is outdated in modern models. For this
reason, we develop a model using GELU, which is differentiable at zero (unlike ReLU)
and scales negative values. Using this activation function, we achieve 79% validation
precision.

5.3 Final Implementation with SwiGLU

In our final test, we make two changes. First, the activation function is again upgraded
to SwiGLU, a state-of-the-art activation function that retains the benefits of GELU, but
adds an additional trainable gating parameter, allowing the degree to which the activation
function effects the flow of the data to be learned during training.

SwiGLU(x) = Linear1(x)× (Linear2(x)× σ(Linear2(x)))

Snow Day Prediction using MLPs 4

where σ is the sigmoid function.

6 Feature Engineering Experiments

In addition to the switch to SwiGLU as an activation function, we increase the number
of input features from 3 to 222 using temporal features and additional metrics such as
wind and visibility to improve our predictions. It works: this model achieves a stunning
91% validation precision. By performing a feature analysis using permutation, we observe
interesting emergent behavior.

Figure 3: Feature Importance (permutation contributions)

In this large model, we see that the majority of the model’s predictive power does not
come from snowfall, as might be expected. Instead, Wind, temperature, and visibility
contribute to a majority of the model’s predictive power. This highlights an interesting
observation about deep learning models: while there is robust evidence to prove the ef-
ficacy of such models, we cannot readily explain how they work internally. This feature
analysis gives a window into the model, but remains unintuitive to standard meteoro-
logical practices. This is one of the core strengths of machine learning overall, deeper
insights that aren’t intuitive to standard forms of pattern recognition. We hypothesize
that these seemingly unimportant features, like wind or visibility, are strong markers of
storm events in our training data, which would explain their importance to the model.

7 Final Model Selection and Optimization

While training a much larger model was an interesting case study in the predictive power
of MLPs, we ultimately do not use this model in our final evaluation. Its size and
complex set of input data features make practical implementation difficult. Instead, we
use the SwiGLU activation to train a new model with the original three input features.
Additionally, we normalize the input dataset using z-scores, which increases the stability
of the model during training.

This new model is detailed above and evaluated in the rest of this report. We train
several initial runs to de-risk the time investment on our final training model, before

Snow Day Prediction using MLPs 5

training locally for 600 thousand loops. The final set of weights from training achieve
89% precision on the validation set. While around 2% less accurate overall than our best
model, this final network uses only 251 parameters in total, which is about 96.7% more
efficient than the larger MLP (7681 parameters) and simplifies deployment. Practicality
and explainability of the model are, in this case, valued slightly over pure performance.

8 Calibration of the Final Model

Following the selection of our final model (89.2% precision), we perform a calibration
step to fix systematic imbalances in the model’s output predictions. Using a bucketing
analysis, we observe that predictions in the 0.4–0.8 range are systematically wrong. The
model has learned an observable association for these ranges, but in a way that is flipped
from the standard prediction logic. Because the number of samples in this range is
relatively small, the model’s overall metrics are not significantly affected by this change.
That being said, this region is probably the most important when it comes to real world
applications, where borderline scenarios are the most difficult to predict.

To rectify this issue, we further calibrate this range, seeing an astonishing 68.6%
improvement in “close call” predictions, and a respectable 5.64% global improvement in
accuracy.

Figure 4: Calibration for Middle-region Predictions

Finally, we observe an interesting trend for extremely cold values when making pre-
dictions. For temperatures under 15 degrees Fahrenheit, the model produces probabilities
close to 100%, even when the predicted snowfall is extremely low (i.e., 0.1 inches). This
unusual behavior is likely an artifact of training. With only 12 samples (2.2% of dataset)
falling below this threshold, there is likely not enough data for the model to learn how
these temperature outliers affect predictions. To fix this issue, we use a data preprocess-
ing step that clips temperatures below 10 degrees, effectively mitigating the issue and
increasing the global accuracy by 0.1%. This is a small change but improves how the
model processes outliers and extreme cases when making predictions.

9 Summary Statistics

Below, we present two tables summarizing the distributions of both our input training
features and the results from our tests.

Snow Day Prediction using MLPs 6

Table 1: Summary statistics for our Training dataset
Feature n Mean Std Min 25% 50% 75%
Max

Predicted Snow (in) 537 1.50 1.61 0 0.5 0.9 2.0
11.6
Previous Snow (in) 537 0.08 0.59 0 0 0 0
7.9
Temperature (°F) 537 25.2 8.32 -4 19.6 26.6 31.2
43.8

Table 2: Summary statistics for Predictions on our dataset
n Mean Std Min 25% 50% 75% Max

537 0.2565 0.2805 0.0000 0.0265 0.1381 0.4177 1.0000

10 Chi-squared Hypothesis Test

Table 3: Observed and expected counts for snow days
Actual Predicted Observed Expected

No Cancellation No Cancellation 428 403.84
No Cancellation Cancellation 66 90.15
Cancellation No Cancellation 11 35.15
Cancellation Cancellation 32 7.84

Total 537 536.98

To determine if the neural network is actually predicting cancellation days correctly, we
conducted a Chi-Square test for homogeneity (α = 0.05) over a simple random sample of
the data set with the following hypotheses:

H0 : There is no association between the model’s predictions
and the actual occurrence of snow days.

Ha : There is an association between the model’s predictions
and the actual occurrence of snow days.

The data meets the requirements for a chi-squared hypothesis test, as 537 days is less
than 10% of the total number of school days. Additionally, each of the expected counts
are over 5, so the large counts condition is met. Our validation set is constructed from a
random sample, so our data is representative.

χ2 =
∑ (observed − expected)2

expected

Snow Day Prediction using MLPs 7

Calculation:
(428− 403.7)2

403.7
+

(66− 90.3)2

90.3
+

(11− 35.3)2

35.3
+

(32− 7.7)2

7.7
= 94.80

Using the equation for the test statistic and the data above, we calculated a χ2 value
of 94.79. With a p-value of essentially zero, we conclude that there is a statistically signif-
icant association between the model’s predictions and the actual snow day occurrences.
We have very strong evidence that the model is accurately predicting snow days.

11 Z Confidence Interval

To examine the true precision of the deep learning model, we produced a 95% confidence
interval using one-proportion z-interval on the validation set (n = 197) in order to esti-
mate the true precision value of the model. The validation set is randomly selected via
a simple random sample, and the positive results used for precision are less than 10% of
all snow days. Each of the true values of positive results has a count of at least ten, so
the large counts condition is met.

Table 4: Truth value of positive results
Result Count

True Positive (Cancellation) 87
False Positive (No Cancellation) 11

Total 98

where p̂ = 87
98

, and n = 98

SE =

√
p̂(1− p̂)

n
= 0.031293

where α = 0.05

z∗ = 1.959964

ME = z∗ · SE = 0.061333

p̂±ME = (0.831141, 0.953806)

Using the data and equations above, we generated a confidence interval of (0.831,
0.954). We are 95% confident that the true precision of the model is contained in the
interval (0.831, 0.954).

12 Conclusion

With a stunning overall calibrated accuracy of 94.8%, and extremely strong statistical
evidence that there is an association between our model’s predictions and actual outcomes
(p-value ≈ 0.000), we are confident in our research and its generalization to real-world
production environments. For this reason, we introduce snowcall.org, a custom website
using our model’s advanced predictive power.

Snow Day Prediction using MLPs 8

Appendix A: Python Implementation of a Simple Model

A full implementation can be found on GitHub.

Listing 1: Python Implementation
from json import loads
from typing import Any
import numpy as np

def c_to_f(c: float) -> float:
return c * 9/5 + 32

def mm_to_in(mm: float) -> float:
return mm / 25.4

with open("model -a.json", "r") as file:
model_a_parameters: dict[Any , Any] = loads(file.read())

def sigmoid(z: Any):
return 1 / (1 + np.exp(-z))

def model_a(snowfall_mm: float , prev_snow_mm: float , temp_c: float) ->
float:
snowfall_in = mm_to_in(snowfall_mm)
prev_snow_in = mm_to_in(prev_snow_mm)
temp_f = c_to_f(temp_c)

if snowfall_in < 0.2 and prev_snow_in < 0.2:
return 0.0

temp_f = max(temp_f , 10)

initial_vector = np.array ((snowfall_in , prev_snow_in , temp_f , 1))
means_vector = np.array ((* model_a_parameters["means"], 0))
stdevs_vector = np.array ((* model_a_parameters["stdevs"], 1))

adjusted_vector = (initial_vector - means_vector) / stdevs_vector

fc1_vector = np.array(model_a_parameters["fc1_weights"])
z1_vector = np.dot(fc1_vector , adjusted_vector)

swiglu_out_vector = np.append(z1_vector [:25] * sigmoid(z1_vector
[25:]) , 1.0)

fc2_vector = np.array(model_a_parameters["fc2_weights"])
z2_scalar = np.dot(fc2_vector , swiglu_out_vector)

prediction = sigmoid(z2_scalar)

if 0.51 <= prediction <= 0.85:
prediction = 1 - prediction

return min(prediction , 0.99)

